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1. Introduction

All manifolds, with or without boundary, are to be compact,

oriented, and differentiable of class C. The boundary of M will

be denoted by bM. The manifold M with orientation reversed is

denoted by -M.

Definition. The manifold M is a homotopy n-sphere if M is

closed (that is, bM = 0) and has the homotopy type of the sphere S1

Definition. Two closed n-manifolds M1 and M2 are h-cobordant

if the disjoint sum M1 + (-M2 ) is the boundary of some manifold W,

where both M1 and (-M2 ) are deformation retracts of W. It is clear

that this is an equivalence relation.

The connected sum of two connected n-manifolds is obtained

by removing a small n-cell from each, and then pasting together

the resulting boundaries. Details will be given in §2.

THEOREM 1.1. The h-cobordism classes of homotopy n-spheres

form an abelian group under the connected sum operation.

This group will be denoted by 0n , and called the n-th

homotopy sphere cobordism group. It is the object of this paper

(which is divided into 2 parts) to investigate the structure of en

It is clear that 0 = 02 = 0. On the other hand these groups

are not all zero. For example, it follows easily from Milnor (14]

that 97 0.

The main result of the present part I will be:

THEOREM 1.2. For n 3 the group 0n is finite.

1 The term "J-equivalent" has previously been used for this

relation. Compare [15], [16], [17].
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(Our methods break down for the case n = 3. However, if one

assumes the Poincare hypothesis then it can be shown that 93 = 0.)

More detailed information about these groups will be given

in Part II. For example, for n = 1,2,3,...,18 it will be shown

that the order of the group en is respectively:

n 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18

[0n] 1 1 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16

Partial summaries of results are given also at the end of 94

and of §7.

Remark. S. Smale [25] and J. Stallings [27], C. Zeeman [33)

have proved that every homotopy n-sphere, n / 3,4, is actually

homeomorphic to the standard sphere Sn. Furthermore, Smale has

proved [26) that two homotopy n-spheres, n / 3,4, are h-cobordant

if and only if they are diffeomorphic. Thus for n / 3,4 (and

possibly for all n) the group en can be described as the set of

all diffeomorphism classes of differentiable st.ructures on the

topological n-sphere. These facts will not be used in the present

paper.

2. Construction of the group 9n

First we give a precise definition of the connected sum

M1 # M2 of two connected n-manifolds M1 and M2. (Compare Seifert

[22] and Milnor [15), [16].) The notation Dn will be used for the

unit disk in euclidean n-space. Choose imbeddings
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i I : Dn M I 2 : Dn M2

so that iI preserves orientation and i2 reverses orientation. Now

obtain M1 # M2 from the disjoint sum

(Mi - il1(0) + (MI2- 2(0))

by identifying ii(tu) with 12 ((l-t)u) for each unit vector ueSn- I

and each 0 < t < 1. Choose the orientation for Mi # M2 which is

compatible with that of M1 and M2 . (This makes sense since the

correspondence i1 (tu) ---i2 ((l-t)u) preserves orientation.)

It is clear that the sum of two homotopy n-spheres is a

homotopy n-sphere.

LEMMA 2.1. The connected sum operation is well defined,

associative, and commutative up to orientation preserving

diffeomorphism. The sphere Sn serves as identity element.

Proof. The first assertions follow easily from the lemma

of Palais [20] and Cerf [5] which asserts that any two orientation

preserving imbeddings i, i' : Dn -- M are related by the equation

i' = fo i, for some diffeomorphism f : M --* M. The proof that

M # Sn is diffeomorphic to M will be left to the reader.

!2
LEMMA 2.2. Let Mi, M1 and be closed and simply connected.

2

If M1 is h-cobordant to M' then M1 # M2 is h-corbordant to MI # M2 .

Proof. We may assume that the dimension n is > 3. Let

Ml +(-M ' ) = bW l , where M1 and -M1 are deformation retracts of W1

Choose a differentiable arc A from a point pc M to a point p'1 -M1

2 This hypothesis is imposed in order to simplify the proof. It
could easily be eliminated.
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within W1 so that a tubular neighborhood of this arc is

diffeomorphic to Rnx [0,1]. Thus we obtain an imbedding

i : Rn X[0,I] --'W1

with i(Rn XO) c-MJ, i(Rn XI)cMI and i(O x[0,1]) = A. Now form

a manifold W from the disjoint sum

(WI - A) + (M2 -i 2 (0)) [O,1]

by identifying i(tu,s) with i2 ((l-t)u)xs for each 0 < t < 1,

0 < s < 1, u E Snl. Clearly W is a compact manifold bounded by

the disjoint sum

1 # M2 + (-(Ml M2)).

We must show that both boundaries are deformation retracts of W.

First it is necessary to show that the inclusion map

M1 - p - W -A

is a homotopy equivalence. Since n > 3 it is clear that both of

these manifolds are simply connected. Mapping the homology exact

sequence of the pair (MI,MI - p) into that of the pair (WI,W I -A)

we see that j induces isomorphisms of homology groups, and hence

is a homotopy equivalence. Now it follows easily, using a Mayer-

Vietoris sequence, that the inclusion

M1 # M2 -- W



I
5

is a homotopy equivalence; hence that M1 # M2 is a deformation

retract of W. Similarly M' # M2 is a deformation retract of W,

which completes the proof of Lemma 2.2.

LEMMA 2.3. A simply connected manifold M is h-cobordant to

the sphere Sn if and only if M bounds a contractible manifold.

(Here the hypothesis of simple connectivity cannot be

eliminated.)

Proof. If M+(-Sn) = bW then filling in a disk Dn+l we

obtain a manifold W' with bW' = M. If Sn is a deformation retract

of W then it clearly follows that W' is contractible.

Conversely if M = bW' with W' contractible, then removing the

interior of an imbedded disk we obtain a simply connected manifold

W with bW = M +(-Sn). Mapping the homology exact sequence of the

pair (D n+lsn) into that of the pair (W',W) we see that the

inclusion Sn --.W induces a homology isomorphism; hence S n is a

deformation retract of W. Now applying the Poincare duality

isomorphism

Hk(W,M) - Hn+I-k (KSn)

we see that the inclusion M -- W also induces isomorphisms of

homology groups. Since M is simply connected, this completes the

proof.

LEMMA 2.4. If M is a homotopy sphere, then M # (-M) bounds

a contractible manifold.

Proof. Let H 2r- D2 denote the half-disk consisting of all

(t sin e,t cos e) with 0 < t < 1, 0 < e < ir, and let 1 Dn c Dn
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denote the disk of radius 1. Given an imbedding i : Dn -- M form

W from the disjoint union

(M- i( Dn)) x [0,7] +Sn-l H2

by identifying i(tu) xO with u x((2t-l)sin 0, (2t-l)cos e) for
1

each 4 t < 1, 0 < e < v. (Intuitively we are removing the
21

interior of i( 1 Dn ) from M and then "rotating" the result through

1800 around the resulting boundary.) It is easily verified that

W is a differentiable manifold with bW = M # (-M). Furthermore

W contains M - Interior i(I Dn) as deformation retract, and

therefore is contractible. This proves Lemma 2.4.

Proof of Theorem 1.1. Let 0 denote the collection of alln

h-cobordism classes of homotopy n-spheres. By Lemmas 2.1 and 2.2

there is a well defined, associative, commutative addition

operation in 0n . The sphere Sn serves as zero element. By Lemmas

2.3, 2.4 each element of 0n has an inverse. Therefore 0n is an

additive group.

Clearly e1 is zero. For n < 3 Munkres (19] and Whitehead

[31] have proved that a topological n-manifold has a differentiable

structure which is unique up to diffeomorphism. It follows that

e2 = 0. If the Poincare hypothesis were proved, it would follow

that e3 is zero; but at present the structure of 93 remains

unknown. For n " 3 the structure of en will be st.2died in the

following sections.

Addendum. There is a slight modification of the connected

sum construction which is frequently useful. Let W1 and W2 be
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(n+l)-manifolds with boundary. Then the sum bWI # bW 2 is the

boundary of a manifold W constructed as follows. Let Hn+l denote

the half-disk consisting of all x = (xo,xl,...,xn) with jx < 1,

xo >0 and let Dn denote the subset xo = 0. Choose imbeddings

iq : (Hn+l,Dn) --, (W q bWq) q = 1,,

so that i2 o -1 reverses orientation. Now form W from

(W1 -i1 (O)) + (W2 - 2 (0))

by identifying il(tu) with i2 ((l-t)u) for each 0 < t < 1,

n  Hn+l.

It is clear that W is a differentiable manifold with

bW = bW1 .# bW2. Note that W has the homotopy type of W. v W2 :

the union with a single point in common.

W will be called the boundary-connected sum of W1 and W2,

and denoted by W = W1 ; W 2

3. Homotopy spheres are s-parallelizable

Let M be a manifold with tangent bundle t = r(M), and let s1

denote a trivial line bundle over M.

Definition. M will be called s-parallelizable if the Whitney

sum T ee is a trivial bundle. 3 The bundle T s w~ll be called

the stable tangent bundle of M. It is a stable bundle in the sense

of (10]. (The expression s-parallelizable stands for stably

parallelizable.)

3 The authors have previously used the term "r-manifold" for an
s-parallelizable manifold.
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THEOREM 3.1. Every homotopy sphere is s-parallelizable,

In the proof we will use recent results of J. F. Adams [1].

Proof. Let E be a homotopy n-sphere. Then the only

obstruction to the triviality of e l1 is a well defined

cohomology class

n (E--) C- H n( ; 7r n-l(SOn+l ) ) = 7n-l(SOn+ I )

The coefficient group may be identified with the stable group

Vn-l (SO). But these stable groups have been computed by Bott [4],

as follows, for n > 2:

residue class of n mod 8 : j 0 1 2 3 4 5 6 7

7n-l(SO)I Z Z2 - Z2 0 Z 0 0 0

(Here Z, Z2, 0 denote the cyclic groups of order co, 2, 1

respectively.)

Case 1. n 3,5,6, or 7 (modulo p3). Then 7n-l(SO) = 0,

so that cYn(7) is trivially zero.

Case 2. n 0 or 4 (modulo 8). Say that n = 4k. According

to [16], [9], some non-zero multiple of the obstruction class

%(5-) can be identified with the Pontryagin class

Pk ( D E I=pk (T ) . But the Hirzebruch signature
4 theorem implies

that Pk[7 -  is a multiple of the signature ( ) which is zero

4 We will substitute the word "signature" for "index" as used in
[7; 13; 16; 17; 26] since this is more in accord with the usage
in other parts of mathematics. The signature of the form

Xl2 +''". + X-_Xl-'" 2+ x2 is defined to be 0 = k-1.
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since H2k(T) = 0. Therefore every homotopy 4k-sphere is

s-parallelizable.

Case 3. n ! 1 or 2 (modulo 8), so that 7r nl(SO) is cyclic

of order 2. For each homotopy sphere Z the residue modulo 2

On[ -] £ 7n1(SO) -Z2

is well defined. It follows from an argument of Rohlin that

Jn-l(On) = 0 

where Jn-I denotes the Hopf-Whitehead homomorphism

Sn-1 : rn-l(SO k ) -- n+k-l(Sk )

in the stable range k > n. But Jn-I is a monomorphism for n % 1

or 2 (modulo 8). For the case n = 2 this fact is well known, and

for n = 9, 10 it has been proved by Kervaire [11). For n = 17, 18

it has been verified by Kervaire and by Toda in unpublished

computations. A proof that J n- is injective for all n 1 or 2

(modulo 8) has recently been given by J. F. Adams (1]. Now the

relation Jnl (6 = 0 together with the information that Jn-l is

a monomorphisin implies that a = 0. This finishes the proof ofn

Theorem 3.1.

In conclusion here are two lemmas which clarify the concept

of s-parallelizability. The first is essentially due to J. H. C.

Whitehead [321.
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LEMMA 3.3. Let M be an n-dimensional submanifold of S n+k

n < k. Then M is s-parallelizable if and only if its normal

bundle is trivial.

LEMMA 3.4. A connected manifold with non-vacuous boundary

is s-parallelizable if and only if it is parallelizable.

The proofs will be based on the following lemma. (Compare

Milnor (17, Lemma 4].)

Let e be a k-dimensional vector space bundle over an

n-dimensional complex, k > n.

LEMMA 3.5. If the Whitney sum of e with a trivial bundle

er is trivial then e itself it trivial.

Proof. We may assume that r = 1, and that is oriented.

An isomorphism e@ 1k ek+l gives rise to a bundle map f from

to the bundle yk of oriented k-planes in (k+l)-space. Since the

base space of has dimension n, and since the base space of 7k is

the sphere Sk, k > n, it follows that f is null-homotopic; and

hence that e is trivial.

Proof of Lemma 3.3. Let T, v denote the tangent and normal

bundles of M. Then T v is trivial hence (T ) el)D v is trivial.

Applying Lemma 3.5 the conclusion follows.

Proof of Lemma 3.4. This follows by a similar argument.

The hypothesis on the manifold guarantees that every map into a

sphere of the same dimension is null-homotopic.
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4. Which homotopy spheres bound parallelizable manifolds?

Define a subgroup bPn+i C en as follows. A homotopy n-sphere

M represents an element of bPn+1 if and only if M is the boundary

of a parallelizable manifold. We will see that this condition

depends only on the h-cobordism class of M, and that bPn+ 1 does

form a subgroup. The object of this section will be to prove the

following

THEOREM 4.1. The quotient group e n/bP n+ is finite.

Proof. Given an s-parallelizable closed manifold M of

dimension n, choose an imbedding

i : M - n+k

with k > n+l. Such an imbedding exists and is unique up to

differentiable isotopy. By Lemma 3.3 the normal bundle of M is

trivial. Now choose a specific field + of normal k-frames. Then

the Pontryagin-Thom construction yields a map

p(M,$) : Sn+k--.S k .

(See Pontryagin (21, pp. 41-57], Thom (28].) The homotopy class

of p(M,$) is a well defined element of the stable homotopy group

Vn = rn+k (S k ) .

Allowing the normal frame field $ to vary we obtain a set

of elements

p(M) = [p(M,+)1c. rn
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LEMMA 4.2. The subset p(M)r rn contains the zero element

of r n if and only if M bounds a parallelizable manifold.

Proof. If M = bW with W parallelizable then the imbedding

i : M -- Sn+k can be extended to an imbedding W --*Dn+k+l, and W

has a field i of normal k-frames. We set 4 = *IM. Now the

Pontryagin-Thom map p(M,) : sn+k -- Sk extends over Dn+k+l, hence

is null-homotopic.

Conversely if p(M,4) - 0 then M bounds a manifold WC-Dn+k+l

where $ extends to a field ip of normal frames over W. It follows

from Lemmas 3.3 and 3.4 that W is parallelizable. This completes

the proof of Lemma 4.2.

LEMMA 4 .3 . If Mo is h-cobordant to M, then p(Mo ) = p(M1).

Proof. If Mo+ (-M1 ) = bW we choose an imbedding of W in

Sn+k (0,1] so that M - Sn+k X(q) for q = 0,1. Then a normal

frame field $q on Mq extends to a normal frame field * on W which

restricts to some normal frame field l-q on M Clearly (W,W)

gives rise to a homotopy between p(Mo o,) and p(Ml,4l).

LEMMA 4.4. If M and M are s-parallelizable then

p(M) +p(M') (p(M #M') C- 7n

Proof. Start with the disjoint sum

M A [O,I]+ M' A [0,I]

and join the boundary components MY1 and M' Al together, as

described in the addendum at the end of §2. Thus we obtain a

manifold W bounded by the disjoint sum
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(M # M') + (-M) + (-MI)

Note that W has the homotopy type of M v M', the union with a

single point in common.

Choose an imbedding of W in Sn + k x(O,1] so that (-M) and

(-M') go into well separated submanifolds of Sn+k o, and so that

M # M' goes into sn+kA 1. Given fields $ and 4' of normal k-frames

on (-M) and (-M'), it is not hard to see that there exists an

extension defined throughout W. Let 7P denote the restriction of

this field to M # M'. Then clearly p(M,$) +p(M', $') is homotopic

to p(M # M',ip). This completes the proof.

LEMMA 4.5. The set p(Sn) .n is a subgroup of the stable

homotopy group 7Tn* For any homotopy sphere E' the set p(T) is a

coset of this subgroup p(Sn). Thus the correspondence -- p(-)

defines a homomorphism p' from en to the quotient group Vn/P(Sn).

Proof. Combining Lemma 4.4 with the identities

(1) Sn # Sn = Sn, (2) Sn # = (3) # #(- )--S n

we obtain

(1) p(S n ) + p(S n ) , P(S n )

which shows that p(Sn) is a subgroup of rn;

(2) p(S n ) +p( p

which shows that p(-) is a union of cosets of this subgroup; and

(3) P(7-)+p(_ T-) C p(S n )
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which shows that p(57) must be a single coset. This completes the

proof of Lemma 4.5.

By Lemma 4.2 the kernel of p' : 0 n--n/P(Sn) consists

exactly of all h-cobordism classes of homotopy n-spheres which

bound parallelizable manifolds. Thus these elements form a group

which we will denote by bPn+l C en . It follows that n/bPn+ 1 is

isomorphic to a subgroup of r n/P(Sn). Since 7n is finite (Serre

[24]), this completes the proof of Theorem 4.1.

Remarks. The subgroup p(Sn)_ 7 n can be described in more

familiar terms as the image of the Hopf-Whitehead homomorphism

J n : n (SOk) - Tn+k(S k ) .

(See Kervaire [9, P. 349].) Hence n/P(Sn) is the cokernel of Jn

The actual structure of these groups for n < 8 is given in the

following table. For details, and for higher values of n, the

reader is referred to Part II of this paper.

n 1 2 3 4 5 6 7 8

Vn Z2 Z 2  Z24 0 0 Z2  Z240 Z2+Z 2

V n/P(Sn) 0 Z2 0 0 0 Z2  0 Z 2

en/bPn+I 0 0 0 0 0 0 0 Z2

The prime q > 3 first divides the order of 0 n/bP n+ for

n = 2q(q-l) -2.
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Using Theorem 4.1 the proof of the main theorem (Theorem 1.2)

stating that On is finite for n / 3 reduces now to proving that

bP n+ is finite for n / 3.

We will prove that the group bP n+ is zero for n even

(95, 6) and is finite cyclic for n odd, n / 3, (see §§7, 8). The

first few groups can be given as follows

n 1 3 5 7 9 11 13 15 17 19

order of

bPi 1 ? 1 28 2 992 1 8128 2 130,816

(Again see Part II for details.) The cyclic group bPn+l has order

1 or 2 for n - 1 (mod 4) but the order grows more than exponentially

for n 3 (mod 4).

5. Spherical modifications

This section, and 06 which follows, will prove that the

groups bP2k+l are zero.
5 That is:

THEOREM 5.1. If a homotopy sphere of dimension 2k bounds

an s-parallelizable manifold M, then it bounds a contractible

manifold M1.

For the case k = 1 this assertion is clear since every

2
homotopy 2-sphere is actually diffeomorphic to S . The proof for

An independent proof of this theorem has been given by C. T. C.
Wall [29].
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6(See Wallace [30], Milnor 15; 17)].)

Definition. Let M be a differentiable manifold of dimension

n = p +q+l and let

$: SP YDq+ l --* M

be a differentiable imbedding. Then a new differentiable manifold

M' = X(M,4) is formed from the disjoint sum

(M - (S p ) O) ) + Dp + I ASq

by identifying $(u,tv) with (tu,v) for each ue.SP , vc Sq ,

0 < t < 1. We will say that M' is obtained from M by the spherical

modification 'X($). Note that the boundary of M' is equal to the

boundary of M.

In order to prove Theorem 5.1 we will show that the homotopy

groups of M can be completely killed by a sequence of such

spherical modifications. The effect of a single modification

() on the homotopy groups of M can be described as follows.

Let Xer pM denote the homotopy class of the :.ap IsP x 0 from

sPx0 to M.

LEMMA 5.2. The homotopy groups of M are given by

iM' 7r iM for i < Min (p,q)

and

Sp M' r pM/A

6 The term "surgery" is used for this concept in (15; 17].
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providing that p < q; where A denotes a certain subgroup of 7rpM

containing N.

The proof is straightforward, (Compare 117, Lemma 2].

Thus if p < q (that is, if p < n/2 -1), the effect of the

modification -)(4) is to kill the homotopy class X.

Now suppose that some homotopy class ?w rpM is given.

LEMMA 5.3. If Mn is s-parallelizable and if p < n/2, then

the class ?\ is represented by some imbedding 4 S : SpD n -  -..M.

Proof. (Compare [17, Lemma 3).) Since n > 2p+l it follows

from a well known theorem of Whitney that X can be represented by

an imbedding

4 : Sp---I. .

It follows from Lemma 3.5 that the normal bundle of 40SP in M is

trivial. Hence 4 can be extended to the required imbedding

SP X Dn-p- M.

Thus Lemmas 5.2 and 5.3 assert that spherical modifications

can be used to kill any required element ?\(--rrp M n providing that

p < n/2 - 1. There is one danger however. If the imbedding 4 is

chosen badly then the modified manifold M' = ((M,4) may no longer

be s-parallelizable. However the following was proven in (17).

Again let n > 2p+l.

LEMMA 5.4. The imbedding 4 sP DnP -- M can be chosen

within its homotopy class so that the modified manifold X.(M,4)

will also be s-parallelizable.

For the proof, the reader may either refer to (17, Theorem 2],

or make use of the sharper Lemma 6.2 which will be proved below.
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Now combining Lemmas 5.2, 5.3, 5.4 one obtains the following.

(Compare [17, p. 46].)

THEOREM 5.5. Let M be a compact, connected s-parallelizable

manifold of dimension n > 2k. By a sequence of spherical modifica-

tions on M one can obtain an s-parallelizable manifold M1 which is

(k-1)-connected.

Recall that bM1 = bM.

Proof. Choosing a suitable imbedding :S x Dn -1 M- one

can obtain an s-parallelizable manifold M' = ')(M,$) such that

rlM' is generated by fewer elements than r1M. Thus after a finite

number of steps one can obtain a manifold M" which is 1-connected.

Now, after a finite number of steps, one can obtain an s-

parallelizable manifold M"' which is 2-connected, and so on until

we obtain a (k-l)-connected manifold. This proves Theorem 5.5.

In order to prove 5.1, where dim M = 2k+l, we must carry

this argument one step further obtaining a manifold M1 which is

k-connected. It will then follow from the Poincare duality

theorem that M1 is contractible.

The difficulty in carrying out this program is that Lemma

5.2 is no longer available. Thus if M' = %(M,$) where $ imbeds

Sk xDk+l in M, the group 7rkM ' may actually be larger than 7rkM.

It is first necessary to describe in detail what happens to 7TkM

under such a modification. Since we may assume that M is (k-l)-

connected with k ) 1, the homotopy group kM may be replaced by

homology group HkM = Hk(M;Z).
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LEMMA 5.6. Let M' = I(M,$) where $ imbeds Sk xDk+l in M,

and let

Mo = M- (interior $ (Sk
x Dk+l)).

Then there is a commutative diagram

Hk+lM

z

Hk+lM Z , A i - HkM 0

HkM

I
0

such that the horizontal and vertical sequences are exact. It

follows that the quotient group HkM/\,(Z) is isomorphic to

HkM'/X' (Z).

Here the following notations are to be understood. The

symbol X denotes the element of HkM which corresponds to the

homotopy class Iskx O, and ?, also denotes the homomorphism
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Z --1Hk which carries 1 into X. On the other hand . : Hk+M- Z
denotes the homomorphism which carries each eHe Hk+ M into the

intersection number ±.0. The symbols N' and .X' are to be

interpreted similarly. The element N' 6H kM corresponds to the

homotopy class 4'10 XS k where

4 : Dk+l x sk--.M

denotes the canonical imbedding.

Proof of Lemma 5.6. As horizontal sequence take the exact

sequence

Hk+lM Hk+l(M,Mo) _ HkMo HkM Hk(M,Mo)

of the pair (M,M ). By excision the group Hj(M,M ) is isomorphic

to

k Z for j = k+l

0  for J < k+l

Thus we obtain

Hk+lM- Z I-I-,HkMo HkM-- 0

as asserted. Since a generator of Hk+l (M,M ) clearly has inter-

section number ±1 with the cycle (Sk A0) which represents 7, it

follows that the homomorphism H k+lM -- Z can be described as the

homomorphism ---o*.. The element s' = s'(1) E HkMo can clearly

be described as the homology class corresponding to the "meridian"

(x0 X S
k ) of the torus $(S k xsk), where xo denotes a base point

in S
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The vertical exact sequence is obtained in a similar way.

Thus e = s(l)e HkMo is the homology class of the "parallel"

$(Skg x 0 ) of the torus. Clearly i(s)E HkM is equal to the homology

class ? of $(SkxO). Similarly i'(s') = ,'.

From this diagram the isomorphisms

HkM/(Z) -HkMo/(Z) + e'(Z) - HkM'/? (Z)

are apparent. This completes the proof of 5.6.

As an application suppose that one chooses an element ?\GHkM

which is primitive in the sense that ±.? = 1 for some p EHk+lM. It

follows that

i : HkMo --. HkM

is an isomorphism, and hence that

HkM '  HkM/?,(Z)

Thus:

ASSERTION. Any primitive element of H kM can be killed by a

spherical modification.

In order to apply this assertion we assume the following:

Hypothesis. M is a compact, s-parallelizable manifold of

dimension 2k+l, k > 1, and is (k-l)-connected. The boundary bM is

either vacuous or a homology sphere.

This hypothesis will be assumed for the rest of § 5 and

for §6.
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LEMMA 5.7. Subject to this hypothesis the homology group

HkM can be reduced to its torsion subgroup by a sequence of

spherical modifications. The modified manifold M1 will still

satisfy the hypothesis.

Proof. Suppose that HkM - Z +0... GZeT where T is the

torsion subgroup. Let ? generate one of the infinite cyclic
a

summands. Using the Poincare duality theorem one sees that

= for some element i, H k+(M,bM). But the exact sequence

H k+M H k+I(M,bM) --a Hk(bM) = 0

shows that tIl can be lifted back to Hk+IM. Therefore X is primi-

tive, and can be killed by a modification. After finitely many

such modifications, one obtains a manifold MI with HkMl a T c HkM.

This completes the proof of 5.7.

Let us specialize to the case k even. Let M be as above,

and let $ : Sk ,(Dk+l -oM be any imbedding.

LEMMA 5.8. If k is even then the modification %(4)

necessarily changes the k-th Betti number of M.

The proof will be based on the following lemma. (See

Kervaire [8, Formula (8.8)).)

Let F be a fixed field and let W be an orientable homology

manifold of dimension 2r. Define the semi-characteristic e*(bW;F)

to be the following residue class modulo 2:

r-1
e*(bW;F) rank Hi(bW;F) (mod 2)

LEMMA 5.9. The rank of the bilinear pairing
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H r(W;F) O Hr(W;F) F

given by the intersection number is congruent modulo 2 to e*(bW;F)

plus the Euler characteristic e(W).

(For the convenience of the reader, here is a proof.

Consider the exact sequence

HrW --h H (WbW) H-rrW,(bW) --... - H o(W,bW) 0 ,

where the coefficient group F is to be understood. A counting

argument shows that the rank of the indicated homomorphism h is

equal to the alternating sum of the ranks of the vector spaces to

the right of h in this sequence. Reducing modulo 2 and using the

identity

rank H i(W,bW) = rank H 2riW

this gives

r-1 2r
rank h s rank Hi(bW) + N rank HiW

S e*(bW;F) + e(W) mod 2

But the rank of

h : HrW-oH r(W,bW) -- HomF(HrWF)

is just the rank of the intersection pairing. This completes the

proof.]

Proof of 5.8. First suppose that M has no boundary. As

shown in (15] or (17) the manifolds M and M' = .(M,4), suitably
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oriented, together bound a manifold W = W(M,$) of dimension 2k+2.

For the moment, since no differentiable structure on W is needed,

we can simply define W to be the union

(MX[OI) (D k+l xDk +1

where it is understood that Sk %D k + 1 is to be pasted onto M xl by

the imbedding 4. Clearly W is a topological manifold with:

bW = MxO + M' xi .

Note that W has the homotopy type of M with a (k+l)-cell

attached. Since the dimension 2k+l of M is odd, this means that

the Euler characteristic

e(W) = e(M) + (-)k+l = (-)k+l

Since k is even the intersection pairing

H k+1l(W; Q) (DH k+1I(W; Q) -

is skew symmetric, hence has even rank. Therefore Lemma 5.9 (with

rational coefficients) asserts that

e*(M+M';Q) + (-1 )k+
l  0 (mod 2)

and hence that

e*(M;Q) 4 e *(MI';Q).

But HM - HiM' 0 for 0 < i < k, so this implies that
i-i -

rank Hk(M;Q) * rank Hk(M';Q)

This proves 5.8 providing that M has no boundary.
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If M is bounded by a homology sphere, then attaching a cone

over bM one obtains a homology manifold M. without boundary. The

above argument now shows that

rank Hk(M*;Q) * rank Hk(M ;Q)

Therefore the modification X($) changes the rank of Hk(M;Q) in

this case also. This completes the proof of 5.8.

It is convenient at this point to insert an analogue of 5.8

which will only be used later. (See end of 96.) Let M be as

above, with k even or odd, and let W = W(M,$).

LEMMA 5.10. Suppose that every mod 2 homology class

t Hk(W;Z 2 )

has self-intersection number.e = 0. Then the modification (+)

necessarily changes the rank of the mod 2 homology group Hk(M;Z2).

The proof is completely analogous to that of 5.8. The

hypothesis, ' = 0 for all , guarantees that the intersection

pairing

Hk(W;Z 2 ) ®Hk(W;Z2 ) --p Z2

will have even rank.

We now return to the case k even.

Proof of Theorem 5.1 for k even. According to 5.6 we can

assume that HkM is a torsion group. Choose

$ SkxDk+l --.M

as in 5.4 so as to represent a non-trivial ?h HkM.
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According to 5.6 we have

HkM/-,(Z) , HkM'/ ,'(Z)•

Since the group \(Z) is finite it follows from 5.8 that ?'(Z) must

be infinite. Thus the sequence

0o -22-1- HkM' -- HkM'/'(Z) -0

is exact. It follows that the torsion subgroup of HkM' maps

monomorphically into HkM'/?'(Z); and hence is definitely smaller

than HkM. Now according to 5.7 we can perform a modification on

M' so as to obtain a new manifold M" with

HkM" , Torsion subgroup of HkM' < HkM

Thus in two steps one can replace HkM by a smaller group.

Iterating this construction a finite number of times, the group

HkM can be killed completely. This completes the proof of Theorem

5.1 for k even.

6. Framed spherical modifications

This section will complete the proof of Theorem 5.1 by

taking care of the case k odd. This case is somewhat more

difficult than the case k even (which was handled in §5) since

it is necessary to choose the imoeddings $ more carefully, taking

particular care not to lose s-parallelizability in the process.
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Before starting on the proof it is convenient to sharpen the con-

cepts of s-parallelixable manifold, and of spherical modification.

Definition. A framed manifold (M,f) will mean a differen-

tiable manifold M together with a fixed trivialization f of the

stable tangent bundle TM @M.

Now consider a spherical modification %Y($) of M. Recall

that M and M' = *k(Mj) together bound a manifold

W = (M x[0,I] ) -,(Dp+I DOq+ l )

where the subset SP x Dq+l of DP+lx Dq+l is pasted onto M x 1 by the

imbedding $. (Compare Milnor (16].) It is easy to give W a

differentiable structure, except along the "corner" Sp  Sq . A

neighborhood of this corner will be "diffeomorphic" with Sp x Sq Y

where

Q R2

denotes the three-quarter disk consisting of all (r cos e,r sin 9)

with 0 - r < 1, 0 < 0 < 37r/2. In order to "straighten" this

corner, map Q onto the hald-disk H, consisting of all

(r cos 0',r sin 0') with 0 < r < 1, 0 • 0' -< r; by setting

e' 2e/3. Now carrying the differentiable structure of H back

to Q, this makes Q into a differentiable manifold. Carrying out

the same transformation on the neighborhood of Sp x Sq , this makes

W = W(Mj) into the required differentiable manifold. Note that

both boundaries of W get the correct differential structures.
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Now identify M with M x O cW and identify the stable tangent

bundle TM eM with the restriction TWIM. Thus a framing f of M

determi,,-s a trivialization of -rwIM.

Definition. A framed spherical modification %($,F) of the

framed manifold (M,f) will mean a spherical modification Y($) of

M together with a trivialization F of the tangent bundle of W,

satisfying the condition

FIM = f

Note that the modified manifold M' = -k(M,$) automatically

acquires a framing

fl = FIM'

It is only necessary to identify TWIM' with the stable tangent

bundle TM, OSM,. To do this we identify the positive direction

in SM, with the outward normal direction in TWIM'.

The following question evidently arises. Given a modifica-

tion X() of M and a framing f of M, does f extend to a

trivialization F of TO The obstructions to such an extension

lie in the cohomology groups

SVp(SOn+
)  for r p

H r +1 ( 4,M ; r (S O n + l ) ) f

Thus the only obstruction to extending f is a well defined class

C7 p (SOn+l ) •
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The modification %(4) can be framed if and only if this

obstruction 7(4) is zero.

Now consider the following alteration of the imbedding F.
Let

a : SP -*SOq+ 1

be a differentiable map, and define

4a : SP x Dq+l --pM

by

4 (uv) = $(uv-a(u))

where the dot denotes the usual action of SO on D l. Clearly

4a is an imbedding which represents the same homotopy class
'k r pM as 4.

LEMMA 6.1. The obstruction 7(4a) depends only on 7(4) and

on the homotopy class (a) of a. In fact

(4a) = 7(4) +s(a)

where s, : r p(SO+) -q- p (SO n+) is induced by the inclusion

s : SOq+1 -; SOn+I .

Proof. (Compare [17], proof of Theorem 2.) Let Wa be the

manifold constructed as W above, now using 4. There is a natural

differentiable imbedding

i a : Dp+ I x int. D q+l -- Wa P

and iatsPX Dq+l coincides with 4a : SPX Dq+l -o M followed by the

inclusion M-M k W .
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r(ly$ is the obstruction to extending fla(SP )0) to a

trivialization of T(Wa) restricted to ia(DP+l xO). Let

tn+l = ep +l xe q+l be the standard framing on Dp+l YD q+l . Then

'(tn+l) is a trivialization of the tangent bundle of Wa restricted
aa

to ia(DP+lx Dq+l), and y($, ) is the homotopy class of the map
g : Sp  so , where g(u) is the matrix (fn+l it(tn+l)> at

$a u, 0).

Since ialIDP+ I O is independent of a, and ialSP xDq+l - ,

we have
ii tn + l ) = ep + I X$'(e q + l )

a= i'(a

at every point (u,O) CSP xD q+l.

Since

4I(e q +l) = $)(eq+l). a(u)

at (u,O), it follows that

it(t n + l ) = i'(tn+l). s().a
Hence

fn+l ia( t n + l ) 
= fn+l i,(t n + l ) • s(a)

and the lemma follows.

Now suppose (as usual) that p < q. Then the homomorphism

s. : V p(SOq+I ) P--r p(SOn+I )

is onto. Hence a can be chosen so that

Y = '( ) + s(a
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is zero. Thus we obtain:

LEMMA 6.2. Given $ SP  --.M with p < q, a map a can be

chosen so that the modification Y(a) can be framed.

In particular, it follows that the manifold %(M,$a ) will be

s-parallelizable. Thus we have proved Lemma 5.4 in a sharpened

form.

We note however that a is not always uniquely determined.

In the case p = q = k odd the homomorphism

s. : k (SO k+) - k(SO n+l )

has an infinite cyclic kernel. This freedom in the choice of a

will be the basis of the proof of 5.1 for k odd.

Let us study the homology of the manifold

where $ is now chosen, by Lemma 6.2, so that the spherical

modification ($) can be framed. Clearly the deleted manifold

MO = M- (interior ,(Sk Dkl))

does not depend on the choise of a. Furthermore the meridian

a(x0 x Sk) of the torus 4, (Sk xk) C Mo does not depend on the

choice of a; hence the homology class

does not depend on a. On the other hand the parallel $a (Sk x x )

does depend on a. In fact it is clear that the homology class
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Ea c HM of this parallel is given by

F- = e+J(a)p-'

where the homomorphism

J : 7rk(SOk+l) -- Z W Vk(Sk )

is induced by the canonical map

P -1 ,X0o'P

from SOk+l to S

The spherical modification 3%(4) can still be framed

provided a is an element of the kernel of

s* : Vk (SO ) - k (SO n+l)

Identifying the stable group vk(SOn+l) with the stable group

7k (SOk+2), there is an exact sequence

k+l )  s.
V k+l (S 7- k (SOk+l ) -- 7 k (SO k+2)

associated with the fibration SO k+2/SOk+1 = Sk+l It is well

known that the composition

Vk+l(Sk+l ) -- 7k(SOk+l) V k( )

sk+l.

carries a generator of (k+l(  ) onto twice a generator vk(Sk),

providing that k is odd. Therefore the integer J.(a) can be any

multiple of 2.
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Let us study the effect of replacing e by ea = s+ J(a)s' on

the homology of the modified manifold. Consider the exact sequence

P1 ki
0 --- a Z H~. HkM o H.-H M - 0

of 5.6, where i carries e into an element N of order I > 1.

Evidently Ae must be a multiple of s', say:

lA + 1'e' = 0 .

Since e' is not a torsion element, these two elements can satisfy

no other relation. Since ea = e+j*(a)e' it follows that

As + (2 - IJ(a))s' = 0

Now using the sequence

Si,
0 -- Z H HkM° o_ H k Ma 0

we see that the inclusion homomorphism ia carries e' into an

element

H kM

of order It'-IJ(a)I. Since H M'/?2(Z) is isomorphic to H M/?(Z)k a a k
we see that the group HkM' is smaller than HkMa if and only if:

0 < IA'- J()l < A .

But J(a) can be any even integer. Thus J(a) can be chosen so that

A < A -' j(a) < A
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This choice of J(a) will guarantee an improvement except in the

special case where ' happens to be divisible by 2.

Our progress so far can be summarized as follows.

LEMMA 6.3. Let M be a framed (k-l)-conneoted manifold of

dimension 2k+l with k odd, k > 1, such that HkM is finite. Let

i(bF) be a framed modification of M which replaces the element

Wf HkM of order 2 > 1 by an element V'e HkM' of order ±W'. If

1'0 mod 2 then it is possible to choose (cx) ,lrk(SOk+l) so that

the modification %($ ) can still be framed, and so that the group

HkM I is definitely smaller than HkM.

Thus one must study the residue class of ' modulo 2. Recall

the definition of linking numbers. (Compare Seifert-Threlfall

[23, 9771.) Let c H pM, re HqM be homology classes of finite

order, with dim M = p+q+l. Consider the homology sequence

H q+ (M;Q/Z) - H qM -- H q(M;Q) .

associated with the coefficient sequence

0 -- Z i-.Q 0- Q/Z --- 0

Since 'N is of finite order, i,? = 0 and = 6(v) for some

v r Hq+l(M;Q/Z). The pairing

Z q Q/Z Q/z

defined by multiplication induces a pairing

HpM OxHq+I(M;Q/Z) --. Q/Z
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defined by the intersection of homology classes. We denote this

pairing by a dot.

Definition. The linking number L(?\,p.) is the rational number

modulo 1 defined by

L(\,p) = v.p.

This linking number is well defined, and satisfies the symmetry

relation

L(p.,\) + (-l)PqL(-,p) = 0

(Compare Seifert and Threlfall.)

LEMMA 6.4. The ratio 2'/2 modulo 1 is, up to sign, equal to

the self-linking number L(?,?).

Proof. Since

es + 2's' = 0

in HkMo we see that the cycle i + L'S' on bM0 bounds a chain c in

Mo. Let cI = 4(xo D k + l ) denote the cycle in $(SkxDk+l) c M with

boundary s'. Then the chain c - 1'c1 has boundary Ls; hence

(c -V'C1 )/Z has boundary s, representing the homology class

in HkM. Taking the intersection of this chain with $(Sk ×O0),

representing N, we obtain ±'/i, since c is disjoint and c1 has

intersection number Tl. Thus L(? ,?\) = ±'/1 mod 1.

Now if L(\,?) / 0 then ' J 0 (mod L) hence the class ? can

be replaced by an element of smaller order under a spherical

modification. Hence, unless L(N,?\) = 0 for all ?\cHkM, this group

can be simplified.
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LEMMA 6.5. If HkM is a torsion group, with L(N,?) = 0 for

every E E HkM, and if k is odd, then this group HkM must be a direct

sum of cyclic groups of order 2.

Proof. The relation

L(n,C) + (-I)Pq L( ,T) = 0

with p = q = 1 (mod 2) implies that

L(7, ) = L( ,7)

Now if self-linking numbers are all zero, the identity

L( +,j,+r) = L(+ ,T)+L( ,q) +L(,)

implies that

2L( ,q) = 0

for all E and r. But, according to the Poincare duality theorem

for torsion groups (see [23, page 245]), L defines a completely

orthogonal pairing

T M ®!D -T Q/Z

p -q

Hence the identity L(2 ,j) = 0 for all rj implies that 2 = 0. This

proves Lemma 6.5.

It follows that, by a sequence of modifications, one can

reduce HkM to a group of the form Z2 k )... ®Z 2 = sZ2.

Now let us apply Lemma 5.8. Since the modification 1(4.)

is framed, the corresponding manifold W = W(M,4a) is parallelizable.

It follows from the formulas of Wu that the Steenrod operation
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Sqk+l : H k+(W;bW;Z 2) H 2k+2(W,bW;Z 2 )

is zero. (See Kervaire [8, Lemma (7.9)).) Hence every

SHk+(W;Z2 ) has self-intersection number .e = 0. Thus,

according to 5.10, the modification 6($a ) changes the rank of

Hk(M;Z 2 ).

But the effect of X(Xa ) on Hk(M;Z), providing that a is

chosen properly, will be to replace the element N of order Z = 2

by an element ?,' of order ' where
a a

-2 < < 2 , ' S 0 (mod 2)

Thus V' must be 0 or 2. Now using the sequence
a

0 -0 Z - HkM -- HkMa/Na(Z) 0
a

where the right hand group is isomorphic to (s-l)Z2 , we see that

HkM is given by one of the following:

z + (s-l)Z 2

Z2 + (s-l)Z2k a-HkM -

Z + (s-2)Z 2 , or

z 4 + (s-2)Z 2

But the first two possibilities cannot occur, since they do not

change the rank of Hk(M;Z 2 ). In the remaining two cases, a further

modification will replace Hk M' by a group which is definitely

smaller than HkM. Thus in all cases HkM can be replaced by a

smaller group by a sequence of framed modifications.
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This completes the proof of 5.1. Actually we have proved

the following result which is slightly sharper.

THEOREM 6.6. Let M be a compact, framed manifold of

dimension 2k+l, k > 1, such that bM is either vacuous or a homology

sphere. By a sequence of framed modifications M can be reduced to

a k-connected manifold M1 -

If bM is vacuous then the Poincare duality theorem implies

that M1 is a homotopy sphere. If bM is a homology sphere then M1

is contractible.

The proof of 6.6 is contained in the above discussion,

providing that M is connected. But using 117, Lemma 2'] it is

easily seen that a disconnected manifold can be connected by

framed modifications. This completes the proof.

§7i The groups bP2k

The next two sections will prove that the groups bP2 k are

finite cyclic for k / 2. In fact for k odd the group bP~k has at

most two elements. For k = 2m # 2 we will see in part II that

bP4m is a cyclic group of order

2 2m-2 (2 2m-l- 1) numerator (4BM/m)

where B denotes the m-th Bernoulli number.
7

m

The proofs will be based on the following.

7 This expression for the order of bP4m relies on provisional

results of J. F. Adams [2].
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LEMMA 7.1. Let M be a (k-l)-connected manifold of dimension

2k, k > 3, and suppose that HkM is free abelian with basis

{ l,..., 1 l, .., r ,iere

;i~h i= 0 , \i. j : 6ij

for all i, j (where 6ij denotes a Kronecker delta). Suppose

further that every imbedded sphere in M which represents a homolosy

class in the subgroup generated by ;l' ''\r has trivial normal

bundle. Then HkM can be killed by a sequence of spherical

modifications.

Proof. According to [17, Lemma 6) or Haefliger [6] any

homology class in HkM can be represented by a differentiably

imbedded sphere.

Remark: It is at this point that the hypothesis k > 3 is

necessary. Our methods break down completely for the case k = 2

since a homology class in H2 (M 
4 ) need not be representable by a

differentiably imbedded sphere. (Compare Kervaire and Milnor

[13].)

Choose an imbedding 4 : sk --- M so as to represent the

homology class 7 r . Since the normal bundle is trivial, 4 o can be

extended to an imbedding 4 : skXDk -- M. Let M' = ).(M,$) denote

the modified manifold, and let

M = M- Interior $(Skx Dk) = M'- Interior $'(Dk+l XSk -l)

The argument now proceeds just as in [17, p. 54]. There is a

diagram
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z

0 - H -0  HkM -- Z -- Hk-1 kM 0 - 0

1
HkM

I
0

where the notation and the proof is similar to that of Lemma 5,6,

Since pr. N r = 1 it follows that Hk-lMo = 0. From this fact one

easily proves that M and M' are (k-l)-connected. The group HkMo

is isomorphic to the subgroup of HkM generated by [,.,

The group HkM' is isomorphic to a quotient group

of HkMo. It has basis L?..., rl.. ., rl where each X

corresponds to a coset

/i + r Z HkM,

and each j corresponds to a coset .j+ rZ .

The manifold M' also satisfies the hypothesis of 7.1. In

order to verify that
0, b

x= 
bi

note that each or j can be represented by a sphere imbedded in

M and representing the homology class or j of M. Thus the

intersection numbers in M' are the same as those in M. In order

to verify that any imbedded sphere with homology class
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N +n r-iI has trivial normal bundle, note that any such

sphere can be pushed off of 4'(0 XSk-1 ), and hence can be deformed

into Mo. It will then represent a homology class

(nl 1 + ... + nr-l r-1) + n r r C HkM ,

and thus will have trivial normal bundle.

Iterating this construction r times, the result will be a

k-connected manifold. This completes the proof of Lemma 7.1.

Now consider an s-parallelizable manifold M of dimension 2k,

bounded by a homology sphere. By Theorem 5.5 we can assume that M

is (k-l)-connected. Using the Poincare duality theorem it follows

that HkM is free abelian, and that the intersection number pairing

HkM ®HkM --- Z

has determinant ±1. The argument now splits up into three cases.

Case 1. Let k = 3 or 7. (Compare [17, Theorem 4'].) Since

k is odd the intersection pairing is skew symmetric. Hence there

exists a "symplectic" basis for HkM: that is a basis r,

l .. ,r} I with

N * = ? .= 7 0 ,. j = 6

Since 7rkl(SOk) = 0 for k = 3,7, any imbedded k-sphere will have

trivial normal bundle. Thus Lemma 7.1 implies that HkM can be

killed. Since an analogous result for k = 1 is easily obtained,

this proves:

LEMMA 7.2. The groups bP 2 , bP6 , and bP1 4 are zero.
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Case 2. k is odd, but k 1,3,7. Again one has a symplectic

basis; but the normal bundle of an imbedded sphere is not necessa-

rily trivil. This case will be studied in 98.

Case 3. k is even, say k = 2m. Then the following is true.

(Compare [17, Theorem 4].)

LEMMA 7.3. Let M be a framed manifold of dimension 4m > 4,
8

bounded by a homology sphere . The homotopy groups of M can be

killed by a sequence of framed spherical modifications if and only

if the si nature cr(M) is zero.

Since a proof of 7.3 is essentially given in [17) we will

only give an outline here.

In one direction the lemma follows from the assertion that

a(M) is invariant under spherical modifications. (See [17, p. 4L]

The fact that M has a boundary does not matter here, since we can

adjoin a cone over the boundary, thus obtaining a closed homology

manifold with the same signature.)

Conversely suppose that Gr(M) = 0. We may assume that M is

(k-l)-connected. Since the quadratic form -- h. has determinant

±1 and signature zero, it is possible to choose a basis r,

for H kM so that Ni'N j = 0, i. j = 6ij. The proof is

analogous to that of [17, Lemma 9], but somewhat simpler since we do

not put any restriction on ILi' j. For any imbedded sphere with

homology class N = n1 N 1 + ... + n r r' the self-intersection number

X-- is zero. Therefore, according to [17, Lemma 71, the normal

bundle is trivial.

8 This lemma is of course also true if bM is vacuous. In this
case the signature o(M) is necessarily zero, by Hirzebruch's
signature theorem.
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Thus M satisfies the hypothesis of 7.1. It follows that HkM

can be killed by spherical modifications. Since the homomorphism

V k(SOk) -V (SO2 k+l)

is onto for k even, it follows from Lemma 6.2 that we need use

only framed spherical modifications. This completes the proof

of 7.3.

LEMMA 7.4. For each k = 2m there exists a parallelizable

manifold M, w1hose boundary bM o is the ordinary (4m-l)-sphere, such

that the stnature a(Mo ) is non-zero.

Proof. According to Milnor and Kervaire [18, p. 457J there

exists a closed "almost parallelizable" 4m-manifold whose signature

is non-zero. Removing the interior of an imbedded 4m-disk from

this manifold, we obtain the required parallelizable manifold Mo.

Now consider the collection of all 4m-manifolds M0 which are

s-parallelizable, and are bounded by the (4m-l)-sphere. Clearly

the corresponding signatures a(Mo )f Z form a group under addition.

Let T > 0 denote the generator of this group.m

THEOREM 7.5. Let El and E 2 be homotopy spheres of dimen-

sion 4m-l, m > 1, which bound s-parallelizable manifolds M1 andM 2

respectively. Then E- is h-cobordant to Z2 if and only if

'(MI E X(M2) mod rm

Proof. First suppose that

aIM) = a(M2 ) + •3M)
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Form the connected sum along the boundary

M = (-Ml) 1 M2 M 0

as in §2; with boundary

bM = - # E # s 4 m -  - 1 # 7-2

Since

a(M) = - c(M1 ) + o(M2 ) + (Mo) = 0

it follows from 7.3 that bM = -_El # "-2 belongs to the trivial

h-cobordism class. Therefore E- is h-cobordant to 2.

Con' ersely let W be an h-cobordism between - -- #5-2 and

the sphere S4m - 1 . Pasting W onto -M± M2 along the common

boundary - £-1 #F2_, we obtain a differentiable manifold M

bounded by the sphere Sm1 . Since M is clearly s-parallelizable,

we have

(r(M) 0 (mod cm)

But

d(M) = 0(-M M 2 ) = -cx(M I ) +5(M2)

Therefore

01(MI ) :r(M2 ) (mod T

which completes the proof.

COROLLARY 7.6. The group bP4m, m > 1, is isomorphic to a sub-

group of the cyclic group of order 0 m" H2e. bP4m finite cyclic.

The proof is evident.

Discussion and computations. In Part II we will see that

bP4m is cyclic of order precisely a.18. In fact a given integer Or
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occurs as ct(M) for some s-parallelizable M bounded by a homotopy

sphere if and only if

o: - 0 (modulo 8)

The following equality is proved in [18, p. 457]:

= 2 m-1i( 2 2m-l_ l)BmJmam/m

where Bm denotes the m-th Bernouli number, Jm denotes the order of

the cyclic group

J(r4m-l(SO)) c- r4m-1

and am equals 1 or 2 according as m is even or odd. Thus bP4m is

cyclic of order

(1) cr18 = 22m-4( 22m-I l)B mJmam/m

According to recent work of J. F. Adams and H. Toda, the

integer Jm is precisely equal to the denominator of B /4m.

(Compare [18, Theorem 4].) Therefore

B mJma/4m = am numerator (B,/4m) = numerator (4BM/m)

where the last equality holds since the denominator of Bm is

divisible by 2 but not 4. Thus bP4 m is cyclic of order

(2) Tm/8 = 2 2m-2( 2 2m-l- 1 ) numerator (4B/m) .

One can also give a formula for the order of the full group

e 4m-l. In Part II we will see that 94m-l/bP4m is isomorphic to
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V4mi/J(r4m-I(SO)). (Compare 14.) Together with formula (1)

above this implies that:

order "4m.l = (order m~l)22m'4( 2 2m-l- l)Bmam.

§8. A cohomology operation

Let 2 < k < n-2 be integers and let (K,L) be a CW-pair which

satisfies the following:

Hypothesis. The cohomology groups Hi(K,L;G) vanish for

k < i < n and for all coefficient groups G.

Then a cohomology operation

* : Hk(K,L;Z) --P Hn(K,L;rn_ (Sk))

is defined as follows9 . Let e0 ES k denote a base point and let

sc Hk(Sk,eO;Z)

denote a generator. Then *(c) will denote the first obstruction

to the existence of a map

f : (K,L) ---p (sk,e° )

satisfying the condition f*(s) = c.

To be more precise let Kr denote the r-skeleton of K. Then

given any class

9 A closely related operation 4o has been studied by Kervaire [12].

The operation o would serve equally well for our purposes.
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xEHk(K,L;Z) - Hk(Kn - 1 U L,L;Z)

it follows from standard obstruction theory that there exists a map

f x : (Kn-I U L'L) - (sk'e°)

with f x s = x; and that the restriction

f x (Kn-2 UL,L)

is well defined up to homotopy. The obstruction to extending fx

over Kn U L is the required class

(x) E H n (K,L; nl (S k)

LEMMA 8.1. The function

?P: Hk(K,L;Z) -- H(K,L;7rn-1 (Sk))

is well defined, and is natural in the following sense. If the

CW-Pair (K',L') also satisfies the hypothesis above, then for any

g : (K',L') -- (K,L)

and any x H k(K,L;Z) the identity

g *(x) = *g*(x)

is satisfied.

The proof is straightforward. It follows that * does not

depend on the particular cell structure of the pair (K,L).

Now let us specialize to the case n = 2k.

LEMMA 8.2. The operator * satisfies the identity
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*(x+y) = O(x) +*(y) + [i,i](x .- y)

where the last term stands for the image of the class

x ..yeH 2k(K,L;Z) under that coefficient homomorphism

Z -- b r2k-l(Sk )

which carries 1 into the Whitehead product class [i,i].

Proof. Let U = e0  ek U teki L) ek+li U ... denote a

complex formed from the sphere Sk by adjoining cells of dimension

• 2k so as to kill the homotopy groups in dimensions > 2k-1. Let

uI Hk(U,e°;Z)

be a standard generator. Evidently the functions

7P : HkU -.. H2 k(U;r 2kl(S))

and

7P : Hk(UxU) -hH 2k(UXU;7r2k-l(Sk))

are defined. We will first evaluate *(u xl + 1xu).

The (2k+l)-skeleton of Ux U consists of the union

U2k+1  0  e U 2k+l Vek ek

Therefore the cohomology class 4(u xl + 1xu)E H2 k (U xU;r2k-l(Sk)

can be expressed uniquely in the form

a xl + 1 b + y(u iu)

with a,beH 2 k(U;rr2kl(Sk)) and 7e 2k-l(Sk). Applying 8.1 to the

inclusion map
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Uxe ° -- 0 U XU

we see that a must be equal to *(u). Similarly b is equal to V(u).

Applying 8.1 to the inclusion

sk Xs k -,U Y, U

we see that *(sxl + lxs) = 7(sx s). But W(s vl + ls) is just

the obstruction to the existence of a mapping

f : skx sk -. Sk

satisfying f(e°,x) = f(x,e° ) = x. Therefore y must be equal to the

Whitehead product class [i,i]er 2k-l(Sk). Thus we obtain the

identity

*'(u Xl + Ixu) = 4(u) Xi + I)4W(u) + [i,i](uXu)

= 4(uXl) + ?(l*u) + [i,i]((uxl) (ixu))

Now consider an arbitrary CW-pair (K,L), and two classes

x,yEHk(K,L). Choose a map

g ." (K,L) -- (U (U, e°  t e ° )

* *i

so that g (u Al) = x, g (lx u) = y. (Such a map can be constructed

inductively over the skeletons of K since the obstruction groups

Hi(K,L;,-i_ (UxU)) are all zero.) Then by 8.1:
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7'(x+y) = g*(U 1 + xU)

= g * (u xl) +g*?(l x u) + [i,iIg*( (u Yl) + (1 xu))

= 4'(x) + *(y) + [i,i](x ,y)

This completes the proof of 8,2.

Now let M be a 2k-manifold which is (k-l)-connected. Then

: Hk(M,bM) -o H2 k(M,bM;7r2kl(Sk)) V (Sk )

is defined.

LEMMA 8.3. Let k be odd I0 and let M be s-parallelizable.

Then an imbedded k-sphere in M has trivial normal bundle if and

only if its dual cohomology class ve Hk(M,bM) satisfies the

condition (v) = 0.

Proof. Let N be a closed tubular neighborhood of the

imbedded sphere, and let

M = M - Interior N

Then there is a commutative diagram

wCHk(N,bN) H2k(N,bN;w 2kl (Sk))

Hk(M,Mo) 0 H2k(M,Mo;7r2k-1 (Sk))

v eHk(M,bM) - H2k(M,bM;7 2k-l(Sk))

10 This lemma is actually true for k even also.



51

where a generator w of the infinite cyclic group Hk(N,bN) corre-

sponds to the cohomology class v under the left hand vertical

arrows. Thus 11

*(v)[MJ = *(w)(N]e r2 k-l(Sk )

It is clear that the homotopy class *(w)(N] depends only on the

normal bundle of the imbedded sphere.

The normal bundle is determined by an element v of the group

7k-l(SOk). Since M is s-parallelizable, v must belong to the

kernel of the homomorphism

V k-l(SO k) o- -kl (SO).

But this kernel Is zero for k = 1,3,7, and is cyclic of order 2

for other odd values of k. The unique non-trivial element corre-

sponds to the tangent bundle of Sk, or equivalently to the normal

bundle of the diagonal in Sk xsk.

Thus if v / 0 then N can be identified with a neighborhood

of the diagonal in S Sk. Then

*(w)(N] * 4(s xl + 1 Ys)[sk.sk ] = [i,i] 0

(assuming that k # 1,3,7). On the other hand if v = 0 then 4(w)

is clearly zero. This completes the proof of 8.3.

Henceforth we will assume that k is odd and 1,3,7. The

subgroup of 72k-l(Sk) generated by [i,i] will be identified with

the standard cyclic group Z2. Thus a function

11 The symbol [M] denotes the homomorphism H n(M,bM;G) --*G
determined by the orientation homology class in H n(M,bM;Z).
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*o : HkM- Z2

is defined by the formula

o() = (x)(M]

where x e Hk(M,bM) denotes the Poincare dual of the homology class X.

Evidently:

I) *o (;N+i) W @o(?) + *o(p.) + ?.p. (mod 2), and

2) o (X) = 0 if and only if an imbedded sphere representing the

homology class X has trivial normal bundle.

Now assume that bM has no homology in dimensions k, k-i, so

that the intersection pairing has determinant ±1. Then one can

choose a symplectic basis for HkM: that is a basis

such that

xi'x = 0 , fi-j = 0 , i. j = 6ij

Definition. The Arf invariant c(M) is defined to be the

residue class
12

*0o0l)*o( Ll) + .. + *o1r)?Po( r) (- Z2 •

(Compare [3].) This residue class modulo 2 does not depend on the

choice of symplectic basis.

LEMMA 8.4. If c(M) = 0 then HkM can be killed by a sequence

of framed spherical modifications.

12 This coincides with the invariant T(M) as defined by Kervaire

[12].
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The proof will depend on Lemma 7.1. Let l .

I be a symplectic basis for HkM. By permuting the i

and 4. we may assume that

*0( i) = ?o(41) = 1 for i < s ,

V0 ( 11) -- 0 for i > s ,

where s is an integer between 0 and r. The hypothesis

c(M) = E- *o(?i)@*o(4i) = 0

implies that s 0 (mod 2).

Construct a new basis l,...,Lr for HkM by the substitu-

tions

21-l = 2iI+-l 2i ' '2i = 421-l-42i

= "2i-l ' 2= 2i

for 21 < s, with

'A =i i 4, =  i

for i > s. This new basis is again symplectic, and satisfies the

condition:

I0o~hl = . :~ o(h')*0 r)

For any sphere imbedded in M with homology class
n .. n' the invariant 4o(M) is zero, and hence the

normal bundle is trivial. Thus the basis [X ,..., rf satisfies of

Lemma 7.1. Thus HkM can be killed by spherical modifications.
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If M is a framed manifold then it is only necessary to use

framed modifications for this construction. This follows from

Lemma 6.2, since the homomorphism k(SOk) -0 k(SO2k+l) is onto

for k / 1,3,7. This completes the proof of 8.4.

THEOREM 8.5. For k odd the group bP2k is either zero or

cyclic of order 2.

According to Lemma 7.2 the groups bP2 , bP6 and bP1 4 are zero.

Thus we may assume that k 1,3,7.

Let MI and M2 be s-parallelizable and (k-l)-connected

manifolds of dimension 2k, bounded by homotopy spheres. If

c(MI ) = c(M2 )

we will prove that bM1 is h-cobordant to bM2 . This will clearly

prove 8.5.

Form the connected-sum-along-the-boundary M1 ± M2 . Clearly

c(M1 k M2 ) = c(M I ) +c(M2 ) = 0 .

Therefore, according to 8.4, it follows that the boundary

b(M1 * M2 ) = bM1 # bM2

bounds a contractible manifold. Hence, according to Theorem 1.1

the manifold bM1 is h-cobordant to -bM2. Since a similar argument

shows that bM2 is h-cobordant to -bM2, this completes the proof.

Remark. It seems plausible that bP2k - Z2 for all odd k

other than 1,3,7; but this is known to be true only for k = 5

(compare Kervaire (12]) and k = 9.
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